If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16(x^2)+64x+175=0
a = -16; b = 64; c = +175;
Δ = b2-4ac
Δ = 642-4·(-16)·175
Δ = 15296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15296}=\sqrt{64*239}=\sqrt{64}*\sqrt{239}=8\sqrt{239}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{239}}{2*-16}=\frac{-64-8\sqrt{239}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{239}}{2*-16}=\frac{-64+8\sqrt{239}}{-32} $
| 2v+5=2v+2 | | 11x+12=5x-12 | | Y=4,z=4 | | 5/7p2/7p+12=6 | | (x^2)-4x-725=0 | | B=4,z=6 | | t+2+5t=0 | | 7x+20=8x+10 | | 3x-(9+(-5x)=45 | | 4=5/2x-6 | | Z=8,u=8 | | X+.30x=40670 | | -1/5w+5=8 | | 6/7m+7=19 | | 8=-3(2x+3)+7x | | 8(2f-3)=4(4-8) | | 9w-1=5(w+3) | | -2a+32+7a=3a-6a | | Y=5,a=10 | | -10+x/5=-14 | | 84=35+2w | | l^2-10L+24=0 | | 8t^2-2t-1=0 | | x-12-x+15=90 | | (-2q^10)(-6q^10) | | x-12-x-15=180 | | x-12-x+15=180 | | 1/2(x+4)=12-2x | | 5x+6-3=9+4x-7 | | (-16x^2)+64x+175=0 | | X+15-x-12=180 | | 4(w+3)=w-15-(-w) |